PHYSICAL REVIEW E VOLUME 59, NUMBER 4 APRIL 1999
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The model of advection of a passive scalar in turbulent velocity field generated by the stochastically forced
Navier-Stokes equation has been studied by means of the quantum field theoretical renormalization group near
two dimensions. A perturbative two-parameter expansion scheme, the parameters of which are the deviation of
the spatial dimension and the deviation of the exponent of the powerlike correlation function of the random
force from their critical values, has been used in one-loop approximation. It is shown that the fixed points of
the renormalization group are independent of the parameters of random injection of the passive scalar. The
asymptotic behavior of velocity-velocity and scalar-scalar correlation functions has been calculated at leading
order in the two-parameter expansion at the kinetic fixed point associated with the Kolmogorov scaling regime.
In this regime the values of the inverse Prandtl number, the Kolmogorov constant, and the Obukhov-Corrsin
constant have been calculated at leading order in the double expansid® 20 S1063-651X99)07604-7

PACS numbgs): 47.27.Gs, 47.27.Qb, 11.10.Hi

I. INTRODUCTION 13,17,18 have applied the RG method to the model of ran-
domly stirred fluid. This model, which describes
Systems with a large number of degrees of freedom dishydrodynamic systems randomly stirred up by forces active
play similar behavior in certain asymptotic regimes indepenat large spatial scales, is considered to be close to the statis-
dently of numerous microscopic details of the system. In thdical behavior of turbulent velocity modes at very high Rey-
theory of strongly developed turbulence thisiversalityis ~ nolds numbers[19,20. Here the application of the RG
connected with long-distance asymptotics of velocity corre/method allows an investigation with minimal empirical input
lation functions. The main indication of the universality in @nd adjustable parameters. _
the turbulence comes from the celebrated Kolmogorov scal- This paper is organized as follows: Section Il starts from
ing theory[1], which describes the large-scale behavior ofthe functional formulation of the generation of turbulent ve-
velocity structure functions. locity field by the stochastic Navier-Stokes equation fol-
Recenﬂy, the prob|em of universa"ty has been active|ylowed by the description of the paSSive scalar prOblem in this
studied in the Kraichnan modi2—9], which is the simplest ~Setup. This formulation is convenient for the analysis based
model of turbulent advection of a passive scalar. In the Kra2n the RG approach, the details of which are described in
ichnan model the random velocity field is assumed to beS€c. lll. The Kolmogorov and Obukhov-Corrsin constants
decorrelated in time, which has led to significant progress i@ calculated in Sec. IV. In Sec. V the conclusions are pre-
the closed-form solution for the equal-time correlation func-sented.
tions of the passive scalar. This assumption is, however, far
from the real behavior of the velocity field in the developed Il. FUNCTIONAL FORMULATION OF THE PASSIVE
turbulence. SCALAR PROBLEM
In this paper we study the problem of the advection of the
passive scalar using a random velocity field generated by th
stochastically forced Navier-Stokes equati@f], which has .
been widely used to produce a stochastic velocity field WithStokes equatlon_. . L
the Kolmogorov scaling behavior obtained by the use of the The stochastic evolution of the local velocity fieid

field-theoretic renormalization groufl1,12. The passive =V(x), x=(x,t) of an incompressi'ble fluid can be Qescribed
scalar problem has already been treated within th&Y e transverse part of the Navier-Stokes equation,

renormalization-group(RG) approach of the randomly N ) _ 2,_fv

forced Navier-Stokes equation for both the logaB] and N vo) =+ P(v-V)v=ueVPv=f*,  (2.1)
long-range 14] correlations of the random force, but without gnq the incompressibility conditions,

random pumping of the passive scalar, due to which the be-

havior of the correlation functions of the passive scalar was V.v=0, V.f’=0. (2.2
not addressed at all.

The RG method represents a powerful, general, and sydn Eg. (2.1) P is the transverse projection operator ands
tematic technique in the study of asymptotic properties in thehe kinematic viscosity. The subscript O refers to unrenor-
quantum field theory, from which it has been transferred tanalized quantities of the model, which are the physical ones
the study of static critical phenomena and also critical dy-in the statistical applications of the renormalization group.
namics[15,16. Since the late 1970s several authpta—  We denote the corresponding renormalized parameters by

We recall the basic features of the generation of the ran-
om velocity field by the use of the randomly forced Navier-
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the same symbols without a subscript. The statistice isf  Original stochastic problem. This action is a functional of the
completely determined by the nonlinear equati¢hd) and  stochastic velocity fiel# and an independent transverse aux-
(2.2 and certain assumptions about the statistics of the exliary field v'.
ternal large-scale random for¢e. In this approach, the generating functiogabf the veloc-

In the approach based on the assumption of maximal rarity correlation and response functions is the functional inte-
domnesq10] the random forces are chosen to be Gaussiagral
[11-13,17,18

g(A“,A“')=J Dv DV’ exp{S{v,v}
(F7(x))=0, (fj(x1)f5(X2))=Djs(X1=X2;9,,)-

+f dx(A”-v+A”'-v')
We choose the distribution function kernel to have the form
[11] with the effective action

d’k S{v,v'}= 1f dx
Djs(X;9,,) =9, 8(1) f 2m)] k#7972 pyg(k) e'hx, ’ 2)

2.3
23 ><Jdxz[vgvj’(xl)Djs(xl—xz;gvo)v;(Xz)]

wherePjs(k) = 6js—k; ks/k? is the transverse projection op-
erator in the wave-vector space. For positive values of the —f dxv’' - N({v};vp), (2.9
coupling constany,  Eg. (2.3 yields a positive-definited

xd)-square matrix of the forcing correlation functions. hereA?, Av" are the source fields, which are equivalent to
From Eq.(2.3) we see that temporal correlationsféfhave  reqular external forces. Here, and henceforth, sums over re-
the character of white nOise, while the Spatial falloff of the peated indices are |mp||c|t|y assumed. ThUS, the stochastic
correlations is controlled by the parameter The matrix  problem is transferred to the calculation of functional inte-
(2.3 is translation invariant and for the valee=2, becomes  grals. They can be calculated perturbatively by means of the
scale invariant. The value=2 is physically most accept- Feynman diagrammatic technique, which has been first ap-
able, since it represents the assumption that random forceflied to hydrodynamics by Wylgi10].

act at very large scales, which substitutes for the effect of The statistical model of the advection of the passive scalar
boundary conditions. For simplicity, we use the force corre-characterized by the concentratiofx) in the turbulent en-

lation function (2.3) without the usual infrared regulariza- vironment (see, e.g.[14], [22]) is given by the system of
tion. The justification of this choice as well as the discussiorequations,

of the central problem of the expansion, i.e., the continua-

tion from e=0 to e=2, have been thoroughly discussed in NUV}; vo) =T,
Ref. [21].
We are working in an arbitrary dimension, but the renor- dc+(v-V)c— vouV2e=fC, (2.5

malization will be carried out in relation to the two-
dimensional model. Therefore, a few words on the choice ofvhereug is the inverse Prandtl number. The random source
the forcing spectrum are in order. In two-dimensional turbu-field ¢ is assumed to be Gaussian and its exact distribution
lence two scaling regimes may occur corresponding to th&unction will be specified later.
direct enstrophy and the inverse energy cascades. Different We have treated the scalar stochastic md@es) in the
forcing spectra are required to model these scaling regime&:amework of the RG double-expansion scheme, which will
If the random forcing used to maintain the stationary state i®e specified in the following.
peaked at some finite wave number, then the enstrophy In the application of the field-theoretic renormalization
pumping rateB (per unit masgand the energy pumping rate group to the large-scale behavior of statistical problems, for-
e are related by3= k|28. Thus, in the case of a finite energy mal ultraviolet divergences arise in the wave-vector space. It
pumping rate concentrated at very large spatial scales, tHg customary23] to classify and analyze these divergences
entrophy pumping rate vanishes and no direct enstrophy caip terms of one-particle irreducible(1Pl) Green functions.
cade can be maintained. There is no inviscid conservatiohhese functions also provide a useful tool for the study of
law for enstrophy above two dimensions, and thus no enstrdRG problems in the theory of the turbulen®2]. For our
phy cascade either. In the double expansion scheme the madirposes we introduce two types of 1Pl Green functibns
goal is, however, three-dimensional turbulence. Thereforethat correspond schematically to connected Feynman dia-
we use a forcing spectrum, which gives rise to the energ@rams with two or three external legs.
cascade. In the latter the energy spectrum obeys the Kolmog- A detailed analysi$14] of the renormalization of the pas-
orov —5/3 law both in two and three dimensions. sive scalar model has shown that there are superficial diver-
As in critical dynamics(see, e.g.[16]), the stochastic gences in the graphs corresponding to the 1PI Green func-
problem(2.1), (2.2), and(2.3) is mapped to a quantum-field tions " andI'°® in the renormalization scheme of Refs.
model, which is determined by an effective De Dominicis-[11,12 applicable for space dimensiods-2. We will refer
Janssen “action”S{v,v’} constructed on the basis of the to the approach df11,12 as the standard scheme. The 1PI
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Green functiond™***" andTI'vc®’, which could, by standard tion constants in the case of multiplicative renormalization of
power counting, give rise to the renormalization of the non-these operators. The analysis of the graphs carried out in Ref.
linear terms in the Navier-Stokes and advection-diffusion25] shows that the diagonal element corresponding to the
equation, are actually finite due to the Galilei invariance ofenergy dissipation operator in the matrix of renormalization
the stochastic equations with temporal white noise. constants is equal to unity. Due to the partially triangular
In two dimensions additional divergences in the graphs OﬁtrUCtUre of the matrix this Implles that the anomalous di-
the 1PI Green functio®’®" occur. Based on this, Ronis mensiqn of the energy dissipation operator vanishes.
[24] has proposed a double-expansion approach using, in ad- Inspired by the study df25], we present h_ere a_gene(al—
dition to the parametee in the force correlation function |zeq treatment of the modéE.S) near two dimensions, in
(2.3), the deviations of the space dimension from two as a which the force correlation function has both the long-range
small expansion parameter whered2d—2 . The main and local term at the outset.

falsa conclusion of[24] was that the energy dissipation _, 22 (I&0e (B0 B SRR AT PR T
operator ¢o/2)divjdiv; has a nonvanishing anomalous scal- 9 9

ing dimension, i.e., it does not scale as the second power (E'Fe action,
5ivj .

The work of Ronig24] was criticized by Honkonen and § g
Nalimov[25]. The essence of their argument is that the non- f d le d%; €' (Xq,1) €' (Xa,t)
local term

d
Xf d°k k272572aeeik~(x17x2)'
f ddxlf d9%, v/ (X1,t) -V (X, 1) (2m)°
d’k K2~ 26-2€ gik- (51~ xp) Here a free parameteris used to control the power form of
(27)¢ the passive scalar injection spectrum. Ber e=0 this cor-

relation function generates logarithmic divergences in the

generated by the force correlation functi@3 is not renor- ~ graphs of the 1PI Green functidi® ©. To take these into

malized since the divergences produced by the graphs aﬂgcount in the multiplicative renormalization of the mOdeI,

always local in space and time. we introduce the corresponding local teshV2c’ in the
Renormalization is carried out at the critical values of thescalar part of the effective action.

parametersi=2, e=0. The long-range part of the correla-  Let us consider the problerf2.5 with the forcing and

tion function of the random force is a powerlike function of Source statistics,

the wave numberk?2°~2¢, and thus a singular function of

the wave number at the origin. The renormalization gives

rise to regular in the wave-number terms only; therefore,

singular terms are not renormalized. Whés e=0, how-

ever, the correlation function becomes a regular function of v v —.3n. NV

the wave number and cannot be distinguished from the local (X100 =10 Dis(x1=X2:18010. 9020, (26

counterterms<k?. It is not obvious how the model should be

renormalized in this case. The prescription proposed in Ref. ug Vg

[25] is based on the observation that, in order to distinguish (fe(x1)fC(xp)) = mD“(xl—xz;a,gclo,gczo),

between the original correlation functiork?~2°~2¢ and the

local counterterms<k?, an analytic regularization with, for

instance, the parametér- e must be used. In order to make \here the correlation matri® is defined by the relation,

the model multiplicatively renormalizable the local terrk?

is added to the force correlation function at the outset. Only

(f7(x)f(x2) )=0,

this term is then renormalized, whereas the nonlocal term is d% _
left intact, contrary to the earlier treatment of the Djs(x;A,B,C)zé(tl—tz)f —des(k) elk-x
d-dimensional model near two dimensidrisf]. (2m)

Thus, alocal term v’ - V2’ must be added to the force X[Bk2-20-2A€t CK2]. 2.7

correlation function for a consistent renormalization of the

model. This leads to significant changes in the RG analysis.

In particular, the anomalous scaling dimension of the energf¥he correlation function(2.7) reflects the detailed intrinsic
dissipation operator turns out to vanish, as indhexpansion statistical definition of forcing, whose consequences are thor-
for d>2 [12,26. This conclusion is based on the oughly discussed in Ref27]. The necessity to introduce a
analysis—in two dimensions—of the renormalization of allcombined forcing, and also to include the additional cou-
Gallilei invariant scalar local operators of canonical dimen-plingsg,,9, Jczo in order to obtain a multiplicatively renor-
sion four (which is the canonical dimension of the energy malizable field theoretic model, is absent in the earlier for-
dissipation operat@with zero wave number and frequency. mulation of this problem.

All such operators may mix with each other under the renor- In analogy with Eq.(2.4) the stochastic problem of the
malization[23]. This gives rise to a matrix of renormaliza- passive scalar can be described by the field-theoretic action,
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'-|-(V }—V O A% (k1) = A" (—k,~ 1) = 6(1) e~ U0k,
\% v C C
\4 v' c c' ALY

o _ 2
LUK, 1) =% 3 Pis(K)(gy10k 2¢7 20+ g0 e oK,

v \% v \% AC(k,t)=1 US Vg(gclok_z ae=204 g e Uo%o Sik
\a v ¢ c'
v v C C The superscripts in Eq3.1) correspond to the notation of
o _ _ the lines of diagrams, ané(t) is the step function.

FIG. 1. One-loop graphs giving rise to the divergent terms in the We have used a combination of dimensional and analytic
perturbative expansion of the one-particle irreducible Green func'regularization[ZS] The divergences appear in the form of
tions [, I'®, I'V'*", andl'® ©, respectively. The slashes on the \5jag in s, ¢ and their linear combinationevhich implies
lines denote the derivatives appearing in the cubic interaction terms,at 5 and € are treated as small parameters of same drder
of the action(2.9). It is customary to use the minimal subtraction scheme in this

connection23]. In this approach we need to calculate only
ps. 1 the divergent parts of the diagrams, since their finite parts are

S :E d Xl d X2

not needed in the one-loop approximation. Bearing this in
mind, we (i) integrated over the internal time of the dia-

3 ) , grams,(ii) integrated over the internal wave vectors of the
X[ vovj (X1) Dis(X1=X2:1.9410, 902005 (X2) diagrams with noninteger dimensionality+24 (dimen-
3 3 sional regularization and (iii) extracted the poles i@, e,
Up Vo 2e+ 6, and @+ 1)e+ & (for 6—0,e—0), in agreement with

Ta=1¢ () Bij(x17X2:8,8c10,9e20) €' (X2) the general minimal subtraction schefi28].

The UV divergences can be removed by adding suitable

+ | dxfc'T—dg.c+ V2e—(v-V)e counterterms to_the basic acti&g ob.tained from Eq(2.8)
f X{cT= et uoro (v-¥)e] by the substitution of the renormalized parameters for the
Ly . bare ones: g,10~4*Gu1,  Gu20—~ A4 “’Gu2,  Geto

v - Nk vo)b 28 T jaer20g g Tg . vosw, andug—u, wherep is a

) ] ) . _ scale setting parameter having the same canonical dimension
As explained above, this action, containing nonanalyticyg the wave number.
terms(proportional to the coupling constards;o andgcs), The structure of the divergences together with the original

also requires analytic terngproportional tog, 0 andgczo) in - form of the action(2.8) lead to the following counterterms:
order to be multiplicatively renormalizable. All dimensional

constantsg,1p, 9,20: dcio: @nd desg, Which control the
amount of randomly injected energy and mass given by Egs. ASZJ’ dx[ v(1-Zy) V' -VA+up(l-2Z,) c'Vic
(2.6) and(2.7), play the role of the expansion parameters of
the perturbation theory. +3(Z3— 1) v3g,m 2V VA

For convenience of further calculations the factaisand
v3ud including the “bare” (moleculaj viscosity v, and the
“bare” (molecular or microscopjc diffusion coefficient
voUg have been extracted.

+3(Z4— Dudrig,c'Vae'].

Within the combined dimensional and analytic renormaliza-
tion which we used, the divergences appear in the form of a
Laurent series ird, €, 2e+ 6, and @+ 1)e+ § and are ab-
Ill. CALCULATION OF THE FIXED POINTS sorbed in the renormalization consta@ts Z,, Z3, andZ,.

OF THE RENORMALIZATION GROUP A property essential for the application of the RG method
is that the counterterms can be chosen in a form containing a

hl.‘i]t us iummariz&a Epﬁ main polints of t_he Rthprocedhur inite number of terms of the same algebraic structure as the
which we have used. The general properties of the met 0% rms of the action2.8). Then all UV divergences of the

applied and perturbative techniques may be found, e.g., IBiagrams may be eliminated by a redefinition of the param-

[23]. eters of the origi is, iti i
. . ginal theory. After this, it is possible to con-
The model(2.8) is renormalizable by the standard power- ;o the regularizing parameters to their “physical” values

counting rules f(?r5: 0 ande=0. The divergent 1P1 Green 5 15 5 of which the former corresponds to the limit

functions are™"", T'°® as in the standard ca$#2] as well  (d—3), and the latter corresponds to the choice of the en-

asT'?'v', T°'¢ which are typical ofi=2. A graphical rep- ergy pumping rate as the only dimensional parameter of the

resentation of the one-loop contributions to these functions iforcing statistics.

depicted in Fig. 1. Renormalized Green functions are expressed in terms of
The lines in the graphs correspond to the following ex-the renormalized parameters,

pressions as functions of time and wave vector:

gvl:gleIu’_zezii gu2:gv201u2§z§z3_1'
’ ' 2
ALY (k1) =AY (—k,—1)=0(t) Pjg(k) e "0k,
is is is —2ae— _ -
(3.1) Je1=Gerok 2273, 9e=0e0Z3Z;', (3.2
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Wheregv = gv1+ gv2 .
Correlation functions of the fields are expressed in terms

appearing in the renormalized action connected with thef scaling functions of the variabls=k/u, se[0,1]. The

original action(2.8) by the relation of multiplicative renor-
malization,

SESv, v/, c,c’,e}=SPSv, V', c, ¢/, ey},

wheree is a shorthand for all the renormalized parameter
{9,1,9,2,9¢1:0¢2,U,v}. Calculation of the correlation and

response functions of the velocity and concentration fields
with the use of the renormalized action yields renormalized

Green functions without UV divergences.
The RG is mainly concerned with the prediction of the

scale-invariant asymptotic behavior of the correlation func-
tions stems from the existence of a stable fixed point of the
RG. The continuous RG transformation is an operation link-

ing a sequence of invariant parametg(s) determined by

éhe Gell-Mann Low equation,

dg(s)

dins (36

Byla(s)],

asymptotic behavior of the correlation and response funcWith the abbrevationg={g,1.9,2.9c1.9c2,U}, Where the

tions expressed in terms of the anomalous dimensjgrisy
the use ofB functions, defined via differential relations

99

dInZ;
01 ﬁg_M(?/.L

I

(3.3

Yi— M ’
0

whereg={0,1,9,2,9¢1,9c2,U}, and the subscript “0” re-

scaling variables parametrizes the RG flow together with the
initial conditions g|s—1=g. (In the infrared limits—0.)
Scale-invariant large-scale asymptotic behavior results at the
infrared stable fixed point of Eq$3.6), determined by the
system of equationgy(g*)=0, and the conditiong—g*,
whens—0.

In the vicinity of the fixed point all the trajectoriags)

fers to partial derivatives taken at fixed values of the barespproach the fixed point, if the matr@:(,gﬁg/ag)|g* is

(unrenormalizeflparameters,,.

positive definite. Foa(s) close tog* we obtain a system of

All the UV divergences are present in the one-particleji,a5rized equations

irreducible Green function§*?’, T°¢', T¥'*' andI'®'¢’.
The renormalization constani,, Z,, Z3, andZ, can be
extracted from the one-loop diagrams of Fig. 1.

The calculation yields in the minimal subtraction scheme,

1 gvl ng
271 e T s )
PD S S L G
2 16mu(l+u)| e 5|
1[931 1 20,1 Qw2
Z3_1_64w[g_vzze+5 e o B9
. 1
Z,=1 [g 19c1

~16mu(1+u)| g (1+a)e+s

901, 9v29c1 i_%
O ae 6|

€
From the definitions(3.2) and (3.3 it follows that the 8
functions are
Buv1=9p1(—2€+3y1), B,2=9,2(20+3y1~ v3),
Bu=u(y1—7v2), (3.5
Bca=9c1(—2a€-26+3y2), Bca=Ye2(372— va).

Here, they functions calculated from Ed3.4) are

_ 9 _ 9
7327 27 8ru(u+1)’
95 9,(dc1t+9c2)

Y37 32mg,," 74 8mgu(u+l)’

IdQ
Sd—s—

|

where |l is the 5X5 unit matrix. Solutions of this system

behave likeg=g* + O(s"i), whens—0. The exponents;,
i=1,2,3,4,5 are the eigenvalues of the matiix The posi-
tive definiteness of() represented by the conditions
Re (\;)=0 is the test of the infrared stability of the fixed
point.

Due to the linearity of the advection-diffusion equation
and Gaussian distribution of the source fi€tdhe connected
correlation functiodV°¢ of the concentration is a linear func-
tional of the correlation function of the source field. This can
be formally seen by taking the Gaussian integral over the
fieldsc andc’ in the generating functional,

)(E—g*)=0,

Q(AC,AC’)zf DvDv' Dc Dc’
xexp{sps+f dx(A®-c+A%-¢’)
=f Dv DV’ exp{s{v,v}
+f d le d xp A%(Xq) Ly H(X1— X2) A% (Xp)

+f d X1f d % A%(%4)

ug vg

" 20d-1) L, "DjiL, (X1 X2) A(X) |,

v J1 v

(3.7)
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where L, is the differential operator of the advection- the running coupling constants of the correlation function of

diffusion equation,
L,c=d,c+ (v- V)c— vouyV2c.

Since the connected correlation functio® is the func-
tional derivative

. 82In G(A®,A%")
WXy, Xp) = ———————— ’
SA (Xl) oA (XZ) AC=AC =0

it is obvious from the explicit expressid.7) that W°® is a
linear functional of the correlation functiopf“(x,) f°(x,))

=[u3vy/(d—1)] Dj;(X;—X2:8,9c10.9c20)- In the perturba-

the source field have the following scaling behavior:

_ kA1
Jc1= gcl(ﬁ) )

A, % k Aq
Ya
e
2ae+25- v, 2
(3.10

k

5{:2: gcz( ;

where the scaling dimensions are

Ay=—2ae—26+3y;, A,=3v5—vy,*,

tion expansion this means that each graph of the 1Pl Green

function ['®’" contains exactly one lind°¢, whereasl'®®’

does not contain\ ¢ at all. Therefore, the renormalization

constantZ, is independent of the coupling constagts and
Oc2, and the dependence df, on g.; andg,, has the fol-
lowing simple form:

and the asterisks denote the values of thieinctions at the
fixed point(3.9).

Apart from the Gaussian fixed poigf; =g’,=0, which
is stable for6>0, e<0, there are two nontrivial fixed points
of the RG: the fixed point corresponding to short-range cor-

g relations of the random forde. 3] with
1

Z4: 1- §2(gvl 192 ,U) - _ngl(gvl !gv2!u)-
C

9 0,1=0, g;,=—32m},

Correspondingly, we may write for the functiopy, the ex-

pression and the inverse Prandtl number

*_\/1—7—1

' Jc1 " ~
Ya= y4(gv119021u)+ gC2 74(gv1!gv21u)' U= 2 =1.562.
C

(3.11

As a consequence, the RG functioflg, and B, are linear
functions of the coupling constangs; andg.,,

The region of stability of this short-range fixed poiné 2
+3€e<0, 6<0 is determined by the positivity of the eigen-

values of the() matrix
Be1=9c1(—2a€—26+3y,),

J17

J17+1°
Since this is an exact relation, it means that the parameters
de1 and g, of the source field correlation function play a The third fixed point is thékinetic fixed point, which is the
role similar to that of the viscosity: They do not have any fixed point relevant to the description of turbulent diffusion.
finite fixed-point values themselves, but their asymptotic beAt the kinetic fixed point the value of the renormalized in-
havior is governed by the fixed point of the R@hich is  verse Prandtl numberis given by Eq.(3.11) and the values
determined by the3 functions corresponding to the renor- of the other relevant coupling constants
malized parameters,, g,, of the force correlation function
and the renormalized inverse Prandtl numbgr Since the 647 €(2e+39)
functions y,, v,, and y; are functions ofg,,, g,» andu gfﬁT—
only, vanishing of the first thre@ functions in Eq.(3.5
already yields a closed system of equations for the fixed . ) . . .
point values ofg,;, g,, andu. When approaching such a which conflrm thosg obtained for the stochastic Navier-
. . v ) ) i Stokes equation earli¢@5].
fixed point, the coefficient functionsg,, v,, and vy, in EQ. . .
L . . . The calculation of th&) matrix [up to the ordeO(e, §)]

(3.8) approach their fixed point values, which determine the e o .

. ) . . at this fixed point yields the eigenvalues,
scaling dimensions of the coupling constagts andg., at

the fixed point. 1 7 2
Thus, in the vicinity of the fixed point determined by the N o=3[(46+3€)* y9e"— 125 —857],
417

system of equations,
€.
J17+1

From these expressions we see that the region of stability of
the kinetic fixed point iss>0, 2e+346>0.

Be2=9c2(3Y2= ¥4) —9e1Va- (3.8 ANi=—2e—38, Ny=—28, \3=—26

647 €2
* =

o+¢€’

€+5 3 guz 9 (312

9,1(—2€+3y1)=0, As=

9,2(26+3y1—v3)=0, (3.9

u(y;—v2)=0,
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IV. KOLMOGOROV AND OBUKHOV-CORRSIN B 9,108 %2
CONSTANTS ,,2e2fidm(g(x>>/x=(_£° °> K—4el3, (4.5

We use the notation, 9u1

Similarly, the combinatioru?g.; appearing in the function

d9x , o
Wﬁv(g-k):f—(z )1d(vi(X1,t)vj(Xz,t)>e'k'("1_X2), R.(g,1) may be expressed as
’7T
_ 3
ddx, _ ?Eclzg—ll 9100, 21-aye-25, (4.6)
W°°(g,k)=f (c(xq,t) (%, 1)) €/ a2, u Yoo
(2m)¢

In the asymptotic regime governed by the kinetic fixed point

for the Fourier transforms of the equal-time pair correlation,ye thus ‘obtain from Eqsi4.2), (4.4), (4.5, and (4.6—at
functions of the random velocity field and the passive scalatgading order—the correlation functions

respectively. To calculate the Kolmogorov and Obukhov-

Corrsin(or Batcheloy constants we construct the large-scale 1425 9 )3 2i3

asymptotic expressions for the correlation functions. Wi”j”(g,k): ——(gh+ g:z)Pij( v10 °> k=20 4el3
The unrenormalized correlation functions are independent 2 "

of the scale-setting parameterof the renormalized correla-

tion functions. This property leads to the basic renormaliza- (931)1/3 gclo,,gug
tion group equation for stationaky®?, We(g,k)= " 31
2u*  (9y10¥0)
w0uleg WP (9,K) = pd,,+ Bgdg— 1 v 3,1 W*(g,k) =0,
(41) 2ae+206

X k72a5726+25/3 (47)
, O i g . . 2ae+26—7v';
with W** satisfying the same equation exactly. HeBgd is

a shorthand for for a>1/12, which is sufficient, since the physically interest-

9= 9+ ot B O+ 9t B ing value isa=1. It should be noted that in the scaling
Pa%4™ Por9gu1* Pavadave™ Baerdger t Fycadger ™ Budu function R, the asymptotic behavior of the running coupling

It is convenient to single out the dimensionless scaling funceonstantsg,; and ge, is given by the expression&.10),

tions R, andR. defined by the relations, whereas the coupling constangs;, g,, and u approach
- o5 —2e their fixed-point values. We have taken into account in Eqg.
Wiy (9.k)= ik 20872 PijR,(9.5), (4.7 that only terms with the scaling dimensidn survive
from Eq.(3.10.

The powers of the wave number in E@.7) are exact,
whereas the coefficients are calculated at leading order of the
perturbation expansion. At the kinetic fixed poi{Bt11) and
(3.12), this yields the leading order term of the § expan-
sion of the scaling functionR, andR..

( —Sdst+ Bydy+2€—27y1) R)(9,5)=0, The energy injection rate and the scalar injection rape
may be expressed as

Wee(g,k)=1?s 29723¢R (g,s), (4.2)
where the dimensionless wave numiserk/u has been in-

troduced. From Eqgg4.1) and(4.2) the basic renormalization
group equations for the scaling functions are

(—Sdst Bydgt+26+2ae—2y,) R(9,8)=0. (4.3

1 d
Solving by the method of characteristics, we obtain for Eq. &= Ef G(FU) - (=k) ),
(4.3 the solution (2)
_ B (a1 e2ea—20S dx y1(g(x)/ d
RU(Q,S)_RU(gyl)S e 1 dX y1(9(X X, X:f (2 )d<fC(k)fC(_k)> (48)
v

Ro(9,5)=R(9,1)s? 22~ 211X na(ablx (4.4 . . . . .
For our choice of correlation functions after the introduction

Wheregis the solution of the Gell-Mann Low Eq€3.6). of simple sharp_cutoffs, Ed4.9) yields th_e relation between
The solution(4.4) leads to scale-invariant behavior of the the unrenormalized values of the coupling constants and the
correlation functions governed by the infrared stable fixeceNergy and scalar injection rates in the form
point. 3 g

To relate the general solutio@.4) to the physically rel- ~(d=1)rp j d 2-26-2e4 g |2
evant injection rates of energy and the passive scalar, we®~ ~ 2 K <k<kg (277)d(g”10 Go20K"),
express the renormalized correlation functions in terms of
the unrenormalized parameters, which, in turn, may be con- 4K
nected with the injection rates. Due to the connection be- x=v3 ugf (k22028 g, K2),
tween the functiong3,; and y,, the scaling factor in Eq. k<k<kj (277)9
(4.4) may be calculated in the closed foffia1], (4.9
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wherek, is the wave number corresponding to the integral Ei(k1)=Coclxs_mki_zaﬁzele’ kgl—ze)/skc/j 2ae—4

scale, andky, k; are the characteristic wave numbers of

viscous and molecular dissipation, respectively. Here, the Kolmogorov constant in tleedimensional spec-
In the stationary state modeling developed isotropic turirum is

bulence, the energy and mass injection are assumed to take

place at large scales. Therefore, we put the paramgigss

and g.,g, Which correspond to small-scale injection of en-

ergy and scalar, equal to zero. It should be borne in mind that (4.14)

the corresponding running coupling constants are created in

the course of renormalization regardless of the unrenormalnd coincides for6=0 with the value obtained irfi29].

ized values of these parameters. The present perturbative cal- is, however, different from the vaIueCk=24’3(2

culation yields only the leading order in tle 5 expansion  + §)13¢/33-13 [21] obtained in the standare expansion.

of the amplitude coefficients in the scaling form of the cor-  The Obukhov-Corrsin constant in Edq4.13 for the
relation functions. Therefore, the coupling constants should-dimensional spectrum is

be solved from Eq(4.9 as functions okt and y also only at

g:1+ 9:2 - 2% 121/3 61/3(€+ 5)2/3

C.=(2 -1/3 —
ST g T 2eran®

leading order of, § expansion. Thus, we arrive at the rela- s 2aet2s (931)1/3
tions Coc=(2m) ’ % *
2ae+26— 1y, u
3
o= 209010 42 4x 123 3 (2¢ +36) Y3 (ae+ )
167 9 = . (419
(V17-1) (e+ 5)¥3(3ae+35—¢)
3,,3
Y= M)kézt—zﬁm (4.10 For one-dimensional spectrum the conversion factors are
8w ' ’

Ci I(1+0I(2¢/3-1/2)

valid for large Reynolds and Peclet numbers, whgiik,

~ Ré™>1 andk)/k~ Pé>1. Co Val(1+5+26/3)
We use the following definitions for thd-dimensional

and one-dimensional spectra of the energy and passive sca- Coct _ I'(1+ 4l (ae—e/3—1/2)

lar, Coc Jrl(8+ae—¢€l3)

Contrary to the standard RG approaf®0,31], the ratio
Cy/Cy¢ here is not a function of the fixed-point value of the
inverse Prandtl number only, but depends on the fixed-point
o values of other coupling constants as well. In this sense this
W3S (t,x;t,x) = j dk; Eq(kyq), (4.11 ratio seems less universal than in the standard approach. Due
0 to the linear dependence of the scalar-scalar correlation func-
tion on the correlation function of the random scalar source,
WES(EX:t,x) = fwdk E°(k) = fwdkl (ky), however, the raticC,/C,, is definitely independent of the
0 0 parameters of the scalar injection. It is a curious feature of
the expression$4.14) and (4.195 that the ratioC,/C, be-
respectively. The spectral functiofs E; andE®, E] are  comes independent of both and e for a=1, which is the

Wﬁ”(t,x;t,x)zzfxdk E(k),
0

connected as physical value of this parameter.
In the inertial-convective rangg32] the only relevant
2T (d/2) ” K2 (d=1)2 dk physical parameters should be the energy and scalar injection
Ei(ki)= mjkl T E(k) 1 rates. To get rid of the dissipative wave numbers, we choose

e=2 anda=1 as the physical values of these parameters
corresponding to the inertial-convective range, in which the
E%(K) % Prandtl numbeu, ! and, consequently, the ratig/k/; are of
k"’ the order of unity. Analysis of the limiting caseg>1
(4.1  (inertial-conductive rangeand up<1 (viscous-convective
range in the present setup requires more detailed knowledge
From Egs.(4.7), (4.10, and(4.11) we then obtain the fol- about the scaling functioR. and is beyond the scope of the

21'(d/2) Jm(l ki)(d“”)’z

Cc k -~ 7 _ -
Exlka) JAT(d=1)/2) )k | 7 k2

lowing asymptotic expressions for the spectra: present treatment.
Thus, in the inertial-convective range, we arrive at the
E(k) — Ck 82/3 k174e/3 kg(ef 2)/3, values
- 2/31,1-4€l3 | 4(e—2)13 T (5/6
e Co=2%2.319-3634, =20 ¢, ~1 044,
VAl (713)

EC( k) — COCX s -1/3 k17236+ 2€l3 k((j4_26)/3k(; 236*4,
4.13 d=2,
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18 The choice of renormalization scheme does not affect the
Ck=4(75/12)"%~3.411, Cia=ggCk~1116, d=3 scaling exponents, but it may change the scaling functions.
(4.16 However, in thee expansion, any renormalization prescrip-
tion different from the minimal subtraction scheme changes
for the Kolmogorov constant and the coefficient and scaling functions by terms, which are of
higher order than the leading order in thexpansion. In the
present paper the correlation functions and spectra are calcu-

2% 413,313 lated at leading order in the expansion, which is uniquely
Coc=——=—~2.327, iven by the minimal subtraction procedure.
T 171 g y p

V. CONCLUSIONS

_ I'(5/6) In the present paper we have investigated the model of
ocl \/;r(4/3) diffusion of passive admixture in a turbulent velocity field

generated by the stochastic Navier-Stokes equation. For a

long-range correlated random force in the Navier-Stokes

Coc~1.660, d=2, equation and a long-range correlated random injection of the

passive scalar in the advection-diffusion equation, we have

constructed the field-theoretic action corresponding to the
stochastic problem.

8(75/12)%3 . . e
oe=———~2.184, In order to make the field-theoretic model multiplicatively
J17-1 renormalizable at two dimensions we have added short-range

terms to the correlation functions of the random source fields
and renormalized the model at one-loop order.
Coar=gCoc~1.310, d=3 (4.17 The principal consequences of the multiplicative renor-
malizability conditions ardi) a more complex form of the
for the Obukhov-Corrsin constant. When comparing with theaction[25], or equivalently(ii) a more complex forcing cor-
data from experiments and simulations, which yield the valtelation function[27] including large and small scale terms
uesCy;~0.5[33] and C,;~0.4[34] (d=3), it should be  (2.7) o
borne in mind that the valueg.16 and(4.17 correspond to By use of the renormalization group, we have constructed
the leading terms of an asymptotic expansion with an expar@n €xpansion of the model in two dimensionless parameters:
sion parameter, which is not small. The value of the ratiothe deviation of the space from two and the deviation of the
Coc1/Cra=11[3(V17—1)]~1.174, however, is a bit closer €xponent of the powerlike correlation functions of the ran-
to the experimental value 0.884] than the values of the dom source fields from the logarithmic value.
constants themselves. We have found that the renormalization constants of the
The value of the Kolmogorov consta@ obtained here Model are independent of the coupling constagisandgc,,
for d=3 is also different from that in the standaecexpan- Which measure the scalar injection rate, apart from the renor-
sion, whereC,(d=3)=2(10/3)"3=2.988[21]. Of course, malization constant of the scalar injection rate term with lo-

the leading order terms of two different expansions of thet@l correlations, which is shown to be a linear function of
Kolmogorov constant do not allow us to make definite con-iN€seé coupling constants to all orders in the perturbation
clusions about the eventual value of this constant in thesf1€0rY- As & consequence, the large-scale asymptotic behav-
expansions. On the other hand, the coefficients of the univefO Of the model is determined by the fixed point of the
sal powers in scaling regimes predicted by the RG are ndfodel without scalar injection. L
universal in general, and this may well be the case here as We have calculated the energy and scalar injection spectra
well. at the leading order of the, § expansion and found them to

In the minimal subtraction scheme only the singular conTépProduce the Kolmogorov and Batchelor scaling behavior
tributions of the graphs to the renormalization constants arf" the physically most acceptable values of the expansion
retained. In general, the renormalization constants are detgp@rameters. The Kolmogorov and Obukhov-Corr@atch-
mined up to a finite renormalization, which may be used tgelon constants have also been calculated at the leading order
relate the parameters of the model to observables at sonf the double expansion. The ratio of the Kolmogorov and
reference scale. For the stochastic Navier-Stokes equatiof?PUkhov-Corrsin constants depends not only on the fixed-

for instance, a natural choice would be point value of the inverse Prandtl number, as in the standard
€ expansion, but also on the fixed-point values of the rate
1 , parameters of the energy injection. It is, however, indepen-
= — (W) Y w,k)|e=n?r= -1, (4.189  dent of the parameters of the scalar injection.
2 gk? k=s The standard expansior{11,12 and the present double

, expansion are the only regular schemes to construct scaling
whereW'? is the renormalized response function of the ve-functions(correlation functions, spectra etaescribing the
locity field, and v, is the viscosity at the reference wave- self-similar behavior in stochastically forced hydrodynamic
number x. The normalization(4.18 implies that at wave equations. There is recent evidence that the results of the
numbers of the order gi the nonlinear terms are negligible. standarde expansion are in agreement with nonperturbative
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results in the simple Kraichnan model for the advection of

the passive scalar for finite valuesef35]. This allows us to
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