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Advection of a passive scalar near two dimensions
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~Received 12 June 1998!

The model of advection of a passive scalar in turbulent velocity field generated by the stochastically forced
Navier-Stokes equation has been studied by means of the quantum field theoretical renormalization group near
two dimensions. A perturbative two-parameter expansion scheme, the parameters of which are the deviation of
the spatial dimension and the deviation of the exponent of the powerlike correlation function of the random
force from their critical values, has been used in one-loop approximation. It is shown that the fixed points of
the renormalization group are independent of the parameters of random injection of the passive scalar. The
asymptotic behavior of velocity-velocity and scalar-scalar correlation functions has been calculated at leading
order in the two-parameter expansion at the kinetic fixed point associated with the Kolmogorov scaling regime.
In this regime the values of the inverse Prandtl number, the Kolmogorov constant, and the Obukhov-Corrsin
constant have been calculated at leading order in the double expansion ford>2. @S1063-651X~99!07604-7#

PACS number~s!: 47.27.Gs, 47.27.Qb, 11.10.Hi
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I. INTRODUCTION

Systems with a large number of degrees of freedom
play similar behavior in certain asymptotic regimes indep
dently of numerous microscopic details of the system. In
theory of strongly developed turbulence thisuniversality is
connected with long-distance asymptotics of velocity cor
lation functions. The main indication of the universality
the turbulence comes from the celebrated Kolmogorov s
ing theory @1#, which describes the large-scale behavior
velocity structure functions.

Recently, the problem of universality has been activ
studied in the Kraichnan model@2–9#, which is the simplest
model of turbulent advection of a passive scalar. In the K
ichnan model the random velocity field is assumed to
decorrelated in time, which has led to significant progres
the closed-form solution for the equal-time correlation fun
tions of the passive scalar. This assumption is, however
from the real behavior of the velocity field in the develop
turbulence.

In this paper we study the problem of the advection of
passive scalar using a random velocity field generated by
stochastically forced Navier-Stokes equation@10#, which has
been widely used to produce a stochastic velocity field w
the Kolmogorov scaling behavior obtained by the use of
field-theoretic renormalization group@11,12#. The passive
scalar problem has already been treated within
renormalization-group~RG! approach of the randomly
forced Navier-Stokes equation for both the local@13# and
long-range@14# correlations of the random force, but witho
random pumping of the passive scalar, due to which the
havior of the correlation functions of the passive scalar w
not addressed at all.

The RG method represents a powerful, general, and
tematic technique in the study of asymptotic properties in
quantum field theory, from which it has been transferred
the study of static critical phenomena and also critical
namics @15,16#. Since the late 1970s several authors@11–
PRE 591063-651X/99/59~4!/4112~10!/$15.00
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13,17,18# have applied the RG method to the model of ra
domly stirred fluid. This model, which describe
hydrodynamic systems randomly stirred up by forces ac
at large spatial scales, is considered to be close to the st
tical behavior of turbulent velocity modes at very high Re
nolds numbers@19,20#. Here the application of the RG
method allows an investigation with minimal empirical inp
and adjustable parameters.

This paper is organized as follows: Section II starts fro
the functional formulation of the generation of turbulent v
locity field by the stochastic Navier-Stokes equation f
lowed by the description of the passive scalar problem in
setup. This formulation is convenient for the analysis ba
on the RG approach, the details of which are described
Sec. III. The Kolmogorov and Obukhov-Corrsin constan
are calculated in Sec. IV. In Sec. V the conclusions are p
sented.

II. FUNCTIONAL FORMULATION OF THE PASSIVE
SCALAR PROBLEM

We recall the basic features of the generation of the r
dom velocity field by the use of the randomly forced Navie
Stokes equation.

The stochastic evolution of the local velocity fieldv
5v(x), x5(x,t) of an incompressible fluid can be describ
by the transverse part of the Navier-Stokes equation,

N~$v%;n0![] tv1P~v•“ !v2n0¹2v5f v , ~2.1!

and the incompressibility conditions,

“•v50, “•f v50. ~2.2!

In Eq. ~2.1! P is the transverse projection operator andn0 is
the kinematic viscosity. The subscript 0 refers to unren
malized quantities of the model, which are the physical o
in the statistical applications of the renormalization grou
We denote the corresponding renormalized parameters
4112 ©1999 The American Physical Society
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PRE 59 4113ADVECTION OF A PASSIVE SCALAR NEAR TWO DIMENSIONS
the same symbols without a subscript. The statistics ofv is
completely determined by the nonlinear equations~2.1! and
~2.2! and certain assumptions about the statistics of the
ternal large-scale random forcef v.

In the approach based on the assumption of maximal
domness@10# the random forces are chosen to be Gauss
@11–13,17,18#,

^ f j
v~x!&50, ^ f j

v~x1! f s
v~x2!&5D js~x12x2 ;gv0

!.

We choose the distribution function kernel to have the fo
@11#

D js~x;gv0
!5gv0

d~ t ! E ddk

~2p!d
k42d22e Pjs~k! eik•x,

~2.3!

wherePjs(k)5d js2kjks /k2 is the transverse projection op
erator in the wave-vector space. For positive values of
coupling constantgv0

Eq. ~2.3! yields a positive-definite (d

3d)-square matrix of the forcing correlation function
From Eq.~2.3! we see that temporal correlations off v have
the character of white noise, while the spatial falloff of t
correlations is controlled by the parametere. The matrix
~2.3! is translation invariant and for the valuee52, becomes
scale invariant. The valuee52 is physically most accept
able, since it represents the assumption that random fo
act at very large scales, which substitutes for the effec
boundary conditions. For simplicity, we use the force cor
lation function ~2.3! without the usual infrared regulariza
tion. The justification of this choice as well as the discuss
of the central problem of thee expansion, i.e., the continua
tion from e50 to e52, have been thoroughly discussed
Ref. @21#.

We are working in an arbitrary dimension, but the ren
malization will be carried out in relation to the two
dimensional model. Therefore, a few words on the choice
the forcing spectrum are in order. In two-dimensional turb
lence two scaling regimes may occur corresponding to
direct enstrophy and the inverse energy cascades. Diffe
forcing spectra are required to model these scaling regim
If the random forcing used to maintain the stationary stat
peaked at some finite wave numberkI , then the enstrophy
pumping rateb ~per unit mass! and the energy pumping rat
« are related byb5kI

2«. Thus, in the case of a finite energ
pumping rate concentrated at very large spatial scales,
entrophy pumping rate vanishes and no direct enstrophy
cade can be maintained. There is no inviscid conserva
law for enstrophy above two dimensions, and thus no ens
phy cascade either. In the double expansion scheme the
goal is, however, three-dimensional turbulence. Theref
we use a forcing spectrum, which gives rise to the ene
cascade. In the latter the energy spectrum obeys the Kolm
orov 25/3 law both in two and three dimensions.

As in critical dynamics~see, e.g.,@16#!, the stochastic
problem~2.1!, ~2.2!, and~2.3! is mapped to a quantum-fiel
model, which is determined by an effective De Dominic
Janssen ‘‘action’’S$v,v8% constructed on the basis of th
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original stochastic problem. This action is a functional of t
stochastic velocity fieldv and an independent transverse au
iliary field v8.

In this approach, the generating functionalG of the veloc-
ity correlation and response functions is the functional in
gral

G~Av,Av8!5E DvDv8 expFS$v,v%

1E dx~Av
•v1Av8

•v8!G ,
with the effective action

S$v,v8%5
1

2E dx1

3E dx2 @ n0
3 v j8~x1!D js~x12x2 ;gv0

!vs8~x2! #

2E dx v8•N~$v%;n0!, ~2.4!

whereAv, Av8 are the source fields, which are equivalent
regular external forces. Here, and henceforth, sums ove
peated indices are implicitly assumed. Thus, the stocha
problem is transferred to the calculation of functional in
grals. They can be calculated perturbatively by means of
Feynman diagrammatic technique, which has been first
plied to hydrodynamics by Wyld@10#.

The statistical model of the advection of the passive sc
characterized by the concentrationc(x) in the turbulent en-
vironment ~see, e.g.,@14#, @22#! is given by the system o
equations,

N~$v%;n0!5f v,

] tc1~v•“ !c2n0u0¹2c5 f c, ~2.5!

whereu0 is the inverse Prandtl number. The random sou
field f c is assumed to be Gaussian and its exact distribu
function will be specified later.

We have treated the scalar stochastic model~2.5! in the
framework of the RG double-expansion scheme, which w
be specified in the following.

In the application of the field-theoretic renormalizatio
group to the large-scale behavior of statistical problems,
mal ultraviolet divergences arise in the wave-vector space
is customary@23# to classify and analyze these divergenc
in terms of one-particle irreducible~1PI! Green functions.
These functions also provide a useful tool for the study
RG problems in the theory of the turbulence@12#. For our
purposes we introduce two types of 1PI Green functionsG
that correspond schematically to connected Feynman
grams with two or three external legs.

A detailed analysis@14# of the renormalization of the pas
sive scalar model has shown that there are superficial di
gences in the graphs corresponding to the 1PI Green fu
tions Gnn8 and Gcc8 in the renormalization scheme of Ref
@11,12# applicable for space dimensionsd.2. We will refer
to the approach of@11,12# as the standard scheme. The 1
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Green functionsGvvv8 and Gvcc8, which could, by standard
power counting, give rise to the renormalization of the no
linear terms in the Navier-Stokes and advection-diffus
equation, are actually finite due to the Galilei invariance
the stochastic equations with temporal white noise.

In two dimensions additional divergences in the graphs
the 1PI Green functionGv8v8 occur. Based on this, Roni
@24# has proposed a double-expansion approach using, in
dition to the parametere in the force correlation function
~2.3!, the deviationd of the space dimension from two as
small expansion parameter where 2d5d22 . The main
~false! conclusion of@24# was that the energy dissipatio
operator (n0/2)] iv j] iv j has a nonvanishing anomalous sc
ing dimension, i.e., it does not scale as the second powe
] iv j .

The work of Ronis@24# was criticized by Honkonen an
Nalimov @25#. The essence of their argument is that the n
local term

E ddx1 E ddx2 v8~x1 ,t !•v8~x2 ,t !

3E ddk

~2p!d
k222d22e eik•~x12x2!

generated by the force correlation function~2.3! is not renor-
malized since the divergences produced by the graphs
always local in space and time.

Renormalization is carried out at the critical values of t
parametersd52, e50. The long-range part of the correla
tion function of the random force is a powerlike function
the wave number}k222d22e, and thus a singular function o
the wave number at the origin. The renormalization giv
rise to regular in the wave-number terms only; therefo
singular terms are not renormalized. Whend5e50, how-
ever, the correlation function becomes a regular function
the wave number and cannot be distinguished from the lo
counterterms}k2. It is not obvious how the model should b
renormalized in this case. The prescription proposed in R
@25# is based on the observation that, in order to distingu
between the original correlation function}k222d22e and the
local counterterms}k2, an analytic regularization with, fo
instance, the parameterd1e must be used. In order to mak
the model multiplicatively renormalizable the local term}k2

is added to the force correlation function at the outset. O
this term is then renormalized, whereas the nonlocal term
left intact, contrary to the earlier treatment of th
d-dimensional model near two dimensions@24#.

Thus, alocal term v8•¹2v8 must be added to the forc
correlation function for a consistent renormalization of t
model. This leads to significant changes in the RG analy
In particular, the anomalous scaling dimension of the ene
dissipation operator turns out to vanish, as in thee expansion
for d.2 @12,26#. This conclusion is based on th
analysis—in two dimensions—of the renormalization of
Galilei invariant scalar local operators of canonical dime
sion four ~which is the canonical dimension of the ener
dissipation operator! with zero wave number and frequenc
All such operators may mix with each other under the ren
malization@23#. This gives rise to a matrix of renormaliza
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tion constants in the case of multiplicative renormalization
these operators. The analysis of the graphs carried out in
@25# shows that the diagonal element corresponding to
energy dissipation operator in the matrix of renormalizat
constants is equal to unity. Due to the partially triangu
structure of the matrix this implies that the anomalous
mension of the energy dissipation operator vanishes.

Inspired by the study of@25#, we present here a genera
ized treatment of the model~2.5! near two dimensions, in
which the force correlation function has both the long-ran
and local term at the outset.

The long-range term of the correlation function of th
source fieldf c gives rise to the following nonlocal term o
the action,

E ddx1 E ddx2 c8~x1 ,t ! c8~x2 ,t !

3E ddk

~2p!d
k222d22ae eik•~x12x2!.

Here a free parametera is used to control the power form o
the passive scalar injection spectrum. Ford5e50 this cor-
relation function generates logarithmic divergences in
graphs of the 1PI Green functionGc8c8. To take these into
account in the multiplicative renormalization of the mod
we introduce the corresponding local termc8 ¹2 c8 in the
scalar part of the effective action.

Let us consider the problem~2.5! with the forcing and
source statistics,

^ f j
v~x1! f c~x2! &50,

^ f j
v~x1! f s

v~x2!&5n0
3 D js~x12x2 ;1,gv10,gv20!, ~2.6!

^ f c~x1! f c~x2!&5
u0

3 n0
3

d21
D j j ~x12x2 ;a,gc10,gc20!,

where the correlation matrixD is defined by the relation,

D js~x;A,B,C!5d~ t12t2!E ddk

~2p!d
Pjs~k! eik•x

3@B k222d22 A e1C k2 #. ~2.7!

The correlation function~2.7! reflects the detailed intrinsic
statistical definition of forcing, whose consequences are th
oughly discussed in Ref.@27#. The necessity to introduce
combined forcing, and also to include the additional co
plings gv20, gc20 in order to obtain a multiplicatively renor
malizable field theoretic model, is absent in the earlier f
mulation of this problem.

In analogy with Eq.~2.4! the stochastic problem of th
passive scalar can be described by the field-theoretic ac
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SPS5
1

2E d x1 E d x2

3Fn0
3v j8~x1! D js~x12x2 ;1,gv10,gv20!vs8~x2!

1
u0

3 n0
3

d21
c8~x1! D j j ~x12x2 ;a,gc10,gc20! c8~x2!G

1E dx ˆc8@2] tc1u0n0¹2c2~v•“ !c #

2v8•N~$v%;n0!‰. ~2.8!

As explained above, this action, containing nonanaly
terms~proportional to the coupling constantsgv10 andgc10),
also requires analytic terms~proportional togv20 andgc20) in
order to be multiplicatively renormalizable. All dimension
constantsgv10, gv20, gc10, and gc20, which control the
amount of randomly injected energy and mass given by E
~2.6! and~2.7!, play the role of the expansion parameters
the perturbation theory.

For convenience of further calculations the factorsn0
3 and

n0
3u0

3 including the ‘‘bare’’ ~molecular! viscosityn0 and the
‘‘bare’’ ~molecular or microscopic! diffusion coefficient
n0u0 have been extracted.

III. CALCULATION OF THE FIXED POINTS
OF THE RENORMALIZATION GROUP

Let us summarize the main points of the RG proced
which we have used. The general properties of the meth
applied and perturbative techniques may be found, e.g
@23#.

The model~2.8! is renormalizable by the standard powe
counting rules ford50 ande50. The divergent 1PI Green
functions areGvv8, Gcc8 as in the standard case@12# as well
asGv8v8, Gc8c8, which are typical ofd52. A graphical rep-
resentation of the one-loop contributions to these function
depicted in Fig. 1.

The lines in the graphs correspond to the following e
pressions as functions of time and wave vector:

D js
vv8~k,t !5D js

v8v~2k,2t !5u~ t ! Pjs~k! e2n0 k2t,
~3.1!

FIG. 1. One-loop graphs giving rise to the divergent terms in
perturbative expansion of the one-particle irreducible Green fu

tions Gvv8, Gcc8, Gv8v8, andGc8c8, respectively. The slashes on th
lines denote the derivatives appearing in the cubic interaction te
of the action~2.8!.
c

s.
f

e
ds
in

is

-

Dcc8~k,t !5Dc8c~2k,2t !5u~ t ! e2u0n0 k2t,

D js
vv~k,t !5 1

2 n0
2 Pjs~k!~gv10k22e22d1gv20!e

2n0 k2utu,

Dcc~k,t !5 1
2 u0

2 n0
2~gc10k

22 ae22d1gc20!e
2u0n0 k2utu.

The superscripts in Eq.~3.1! correspond to the notation o
the lines of diagrams, andu(t) is the step function.

We have used a combination of dimensional and anal
regularization@23#. The divergences appear in the form
poles ind, e and their linear combinations~which implies
that d ande are treated as small parameters of same ord!.
It is customary to use the minimal subtraction scheme in
connection@23#. In this approach we need to calculate on
the divergent parts of the diagrams, since their finite parts
not needed in the one-loop approximation. Bearing this
mind, we ~i! integrated over the internal time of the dia
grams,~ii ! integrated over the internal wave vectors of t
diagrams with noninteger dimensionality 212d ~dimen-
sional regularization!, and ~iii ! extracted the poles ind, e,
2e1d, and (a11)e1d ~for d→0,e→0), in agreement with
the general minimal subtraction scheme@28#.

The UV divergences can be removed by adding suita
counterterms to the basic actionSB obtained from Eq.~2.8!
by the substitution of the renormalized parameters for
bare ones: gv10→m2egv1 , gv20→m22dgv2 , gc10
→m2ae12dgc1 , gc20→gc2 , n0→n, andu0→u, wherem is a
scale setting parameter having the same canonical dimen
as the wave number.

The structure of the divergences together with the origi
form of the action~2.8! lead to the following counterterms

DS5E d x @ n ~12Z1! v8•¹2v1u n~12Z2! c8¹2c

1 1
2 ~Z321!n3gv2m22dv8¹2v8

1 1
2 ~Z421!u3n3gc2c8¹2c8#.

Within the combined dimensional and analytic renormaliz
tion which we used, the divergences appear in the form o
Laurent series ind, e, 2e1d, and (a11)e1d and are ab-
sorbed in the renormalization constantsZ1 , Z2 , Z3, andZ4.

A property essential for the application of the RG meth
is that the counterterms can be chosen in a form containin
finite number of terms of the same algebraic structure as
terms of the action~2.8!. Then all UV divergences of the
diagrams may be eliminated by a redefinition of the para
eters of the original theory. After this, it is possible to co
tinue the regularizing parameters to their ‘‘physical’’ valu
d→1/2, e→2, of which the former corresponds to the lim
(d→3), and the latter corresponds to the choice of the
ergy pumping rate as the only dimensional parameter of
forcing statistics.

Renormalized Green functions are expressed in term
the renormalized parameters,

gv15gv10m22e Z1
3 , gv25gv20m2d Z1

3Z3
21 ,

gc15gc10m22ae22d Z2
3 , gc25gc20Z2

3 Z4
21 , ~3.2!

e
c-

s
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n5n0 Z1
21 , u5u0 Z1Z2

21 ,

appearing in the renormalized action connected with
original action~2.8! by the relation of multiplicative renor
malization,

SR
PS$v, v8, c, c8, e%5SPS$v, v8, c, c8, e0%,

wheree is a shorthand for all the renormalized paramet
$gv1 ,gv2 ,gc1 ,gc2 ,u,n%. Calculation of the correlation an
response functions of the velocity and concentration fie
with the use of the renormalized action yields renormaliz
Green functions without UV divergences.

The RG is mainly concerned with the prediction of t
asymptotic behavior of the correlation and response fu
tions expressed in terms of the anomalous dimensionsg j by
the use ofb functions, defined via differential relations

g j5m
] ln Zj

]m U
0

, bg5m
]g

]mU
0

, ~3.3!

where g5$gv1 ,gv2 ,gc1 ,gc2 ,u%, and the subscript ‘‘0’’ re-
fers to partial derivatives taken at fixed values of the b
~unrenormalized! parameterse0.

All the UV divergences are present in the one-parti
irreducible Green functionsGvv8, Gcc8, Gv8v8, and Gc8c8.
The renormalization constantsZ1 , Z2 , Z3, and Z4 can be
extracted from the one-loop diagrams of Fig. 1.

The calculation yields in the minimal subtraction schem

Z1512
1

64pFgv1

e
2

gv2

d G ,
Z2512

1

16pu~11u!Fgv1

e
2

gv2

d G ,
Z3512

1

64pFgv1
2

gv2

1

2e1d
1

2gv1

e
2

gv2

d G , ~3.4!

Z4512
1

16pu~11u!Fgv1gc1

gc2

1

~11a!e1d

1
gv1

e
1

gv2gc1

gc2

1

ae
2

gv2

d G .
From the definitions~3.2! and ~3.3! it follows that the b
functions are

bv15gv1 ~22e13g1!, bv25gv2 ~2d13g12g3!,

bu5u~g12g2!, ~3.5!

bc15gc1~22 a e22 d13g2!, bc25gc2 ~3g22g4!.

Here, theg functions calculated from Eq.~3.4! are

g15
gv

32p
, g25

gv

8pu~u11!
,

g35
gv

2

32pgv2
, g45

gv~gc11gc2!

8pgc2u~u11!
,

e

s

s
d

c-

e

,

wheregv5gv11gv2 .
Correlation functions of the fields are expressed in ter

of scaling functions of the variables5k/m, sP@0,1#. The
scale-invariant asymptotic behavior of the correlation fun
tions stems from the existence of a stable fixed point of
RG. The continuous RG transformation is an operation lin
ing a sequence of invariant parametersḡ(s) determined by
the Gell-Mann Low equation,

dḡ~s!

d ln s
5bg@ ḡ~s!#, ~3.6!

with the abbrevationḡ5$ḡv1 ,ḡv2 ,ḡc1 ,ḡc2 ,ū%, where the
scaling variables parametrizes the RG flow together with th
initial conditions ḡus515g. ~In the infrared limit s→0.!
Scale-invariant large-scale asymptotic behavior results at
infrared stable fixed point of Eqs.~3.6!, determined by the
system of equationsbg(g* )50, and the conditionsḡ→g* ,
whens→0.

In the vicinity of the fixed point all the trajectoriesg(s)
approach the fixed point, if the matrixV5(]bg /]g)ug* is
positive definite. Forḡ(s) close tog* we obtain a system o
linearized equations,

S I s
d

ds
2V D ~ ḡ2g* !50,

where I is the 535 unit matrix. Solutions of this system
behave likeḡ5g* 1O(sl j), whens→0. The exponentsl j ,
j 51,2,3,4,5 are the eigenvalues of the matrixV. The posi-
tive definiteness of V represented by the condition
Re (l j )>0 is the test of the infrared stability of the fixe
point.

Due to the linearity of the advection-diffusion equatio
and Gaussian distribution of the source fieldf c the connected
correlation functionWcc of the concentration is a linear func
tional of the correlation function of the source field. This c
be formally seen by taking the Gaussian integral over
fields c andc8 in the generating functional,

G~Ac,Ac8!5E DvDv8DcDc8

3expFSPS1E dx ~Ac
•c1Ac8

•c8!G
5E DvDv8 expFS$v,v%

1E d x1E d x2 Ac~x1! Lv
21~x12x2!Ac8~x2!

1E d x1E d x2 Ac~x1!

3
u0

3 n0
3

2~d21!
Lv

21D j j Lv
2T~x12x2!Ac~x2!G ,

~3.7!
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where Lv is the differential operator of the advection
diffusion equation,

Lvc5] tc1~v•“ !c2n0u0¹2c.

Since the connected correlation functionWcc is the func-
tional derivative

Wcc~x1 ,x2!5
d2 ln G~Ac,Ac8!

dAc~x1!dAc~x2!
U

Ac5Ac850

,

it is obvious from the explicit expression~3.7! that Wcc is a
linear functional of the correlation function̂f c(x1) f c(x2)&
5@u0

3n0
3/(d21)# D j j (x12x2 ;a,gc10,gc20). In the perturba-

tion expansion this means that each graph of the 1PI G
function Gc8c8 contains exactly one lineDcc, whereasGcc8

does not containDcc at all. Therefore, the renormalizatio
constantZ2 is independent of the coupling constantsgc1 and
gc2, and the dependence ofZ4 on gc1 and gc2 has the fol-
lowing simple form:

Z4512z2~gv1 ,gv2 ,u!2
gc1

gc2
z1~gv1 ,gv2 ,u!.

Correspondingly, we may write for the functiong4 the ex-
pression

g45g48~gv1 ,gv2 ,u!1
gc1

gc2
g49~gv1 ,gv2 ,u!.

As a consequence, the RG functionsbc1 andbc2 are linear
functions of the coupling constantsgc1 andgc2,

bc15gc1~22ae22d13g2!,

bc25gc2~3g22g48!2gc1g49 . ~3.8!

Since this is an exact relation, it means that the parame
gc1 and gc2 of the source field correlation function play
role similar to that of the viscosityn: They do not have any
finite fixed-point values themselves, but their asymptotic
havior is governed by the fixed point of the RG~which is
determined by theb functions corresponding to the reno
malized parametersgv1 , gv2 of the force correlation function
and the renormalized inverse Prandtl numberu). Since the
functions g1 , g2, and g3 are functions ofgv1 , gv2 and u
only, vanishing of the first threeb functions in Eq.~3.5!
already yields a closed system of equations for the fi
point values ofgv1 , gv2 and u. When approaching such
fixed point, the coefficient functionsg2 , g48, andg49 in Eq.
~3.8! approach their fixed point values, which determine
scaling dimensions of the coupling constantsgc1 andgc2 at
the fixed point.

Thus, in the vicinity of the fixed point determined by th
system of equations,

gv1~22e13g1!50,

gv2 ~2d13g12g3!50, ~3.9!

u ~g12g2!50,
en

rs

-

d

e

the running coupling constants of the correlation function
the source field have the following scaling behavior:

ḡc15gc1S k

m D D1

,

ḡc25gc2S k

m D D2

1
g49*

2ae12d2g48*
gc1F S k

m D D1

21G ,
~3.10!

where the scaling dimensions are

D1522ae22d13g2* , D253g2* 2g48* ,

and the asterisks denote the values of theg functions at the
fixed point ~3.9!.

Apart from the Gaussian fixed pointgv1* 5gv2* 50, which
is stable ford.0, e,0, there are two nontrivial fixed point
of the RG: the fixed point corresponding to short-range c
relations of the random force@13# with

gv1* 50, gv2* 5232pd,

and the inverse Prandtl number

u* 5
A1721

2
.1.562. ~3.11!

The region of stability of this short-range fixed point 2d
13e,0, d,0 is determined by the positivity of the eigen
values of theV matrix

l1522e23d, l2522d, l3522d
A17

A1711
.

The third fixed point is thekinetic fixed point, which is the
fixed point relevant to the description of turbulent diffusio
At the kinetic fixed point the value of the renormalized i
verse Prandtl numberu is given by Eq.~3.11! and the values
of the other relevant coupling constants

gv1* 5
64p

9

e ~2e13d!

e1d
, gv2* 5

64p

9

e2

d1e
, ~3.12!

which confirm those obtained for the stochastic Navi
Stokes equation earlier@25#.

The calculation of theV matrix @up to the orderO(e,d)]
at this fixed point yields the eigenvalues,

l1,25
1
3 @~4d13e!6A9e2212de28d2#,

l35
4A17

A1711
e.

From these expressions we see that the region of stabilit
the kinetic fixed point ise.0, 2e13d.0.
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IV. KOLMOGOROV AND OBUKHOV-CORRSIN
CONSTANTS

We use the notation,

Wi j
vv~g,k!5E ddx1

~2p!d
^v i~x1 ,t ! v j~x2 ,t !& eik•~x12x2!,

Wcc~g,k!5E ddx1

~2p!d
^c~x1 ,t ! c~x2 ,t !& eik•~x12x2!,

for the Fourier transforms of the equal-time pair correlat
functions of the random velocity field and the passive sca
respectively. To calculate the Kolmogorov and Obukho
Corrsin~or Batchelor! constants we construct the large-sca
asymptotic expressions for the correlation functions.

The unrenormalized correlation functions are independ
of the scale-setting parameterm of the renormalized correla
tion functions. This property leads to the basic renormali
tion group equation for stationaryWvv,

m]mue0
Wvv~g,k!5@ m]m1bg]g2g1 n ]n# Wvv~g,k!50,

~4.1!

with Wcc satisfying the same equation exactly. Here,bg]g is
a shorthand for

bg]g5bgv1]gv11bgv2]gv21bgc1]gc11bgc2]gc21bu]u .

It is convenient to single out the dimensionless scaling fu
tions Rv andRc defined by the relations,

Wi j
vv~g,k!5n2 k22d s22e Pi j Rv~g,s!,

Wcc~g,k!5n2 s22d22ae Rc~g,s!, ~4.2!

where the dimensionless wave numbers5k/m has been in-
troduced. From Eqs.~4.1! and~4.2! the basic renormalization
group equations for the scaling functions are

~ 2s]s1bg]g12e22g1! Rv~g,s!50,

~2s]s1bg]g12d12ae22g1! Rc~g,s!50. ~4.3!

Solving by the method of characteristics, we obtain for E
~4.3! the solution

Rv~g,s!5Rv~ ḡ,1!s2ee22*1
s dx g1~ ḡ~x!!/x,

Rc~g,s!5Rc~ ḡ,1!s2d12aee22*1
s dx g1~ ḡ~x!!/x, ~4.4!

where ḡ is the solution of the Gell-Mann Low Eqs.~3.6!.
The solution~4.4! leads to scale-invariant behavior of th
correlation functions governed by the infrared stable fix
point.

To relate the general solution~4.4! to the physically rel-
evant injection rates of energy and the passive scalar,
express the renormalized correlation functions in terms
the unrenormalized parameters, which, in turn, may be c
nected with the injection rates. Due to the connection
tween the functionsbv1 and g1, the scaling factor in Eq
~4.4! may be calculated in the closed form@21#,
r,
-

nt

-

-

.

d

e
f

n-
-

n2e22*1
s dx g1„ḡ~x!…/x5S gv10n0

3

ḡv1
D 2/3

k24e/3. ~4.5!

Similarly, the combinationū2ḡc1 appearing in the function
Rc(ḡ,1) may be expressed as

ū2ḡc15
ḡv1

ū

gc10u0
3

gv10
k2~12a!e22d. ~4.6!

In the asymptotic regime governed by the kinetic fixed po
we thus obtain from Eqs.~4.2!, ~4.4!, ~4.5!, and ~4.6!—at
leading order—the correlation functions

Wi j
vv~g,k!5

112d

2
~gv1* 1gv2* !Pi j S gv10n0

3

gv1*
D 2/3

k22d24e/3,

Wcc~g,k!5
~gv1* !1/3

2u*

gc10n0
3u0

3

~gv10n0
3!1/3

3S 2ae12d

2ae12d2g84*
D k22ae22d12e/3, ~4.7!

for a.1/12, which is sufficient, since the physically interes
ing value is a51. It should be noted that in the scalin
functionRc the asymptotic behavior of the running couplin
constantsḡc1 and ḡc2 is given by the expressions~3.10!,
whereas the coupling constantsḡv1 , ḡv2 and ū approach
their fixed-point values. We have taken into account in E
~4.7! that only terms with the scaling dimensionD1 survive
from Eq. ~3.10!.

The powers of the wave number in Eq.~4.7! are exact,
whereas the coefficients are calculated at leading order o
perturbation expansion. At the kinetic fixed point~3.11! and
~3.12!, this yields the leading order term of thee, d expan-
sion of the scaling functionsRv andRc .

The energy injection rate« and the scalar injection ratex
may be expressed as

«5
1

2E ddk

~2p!d
^f v~k!•f v~2k! &,

x5E ddk

~2p!d
^ f c~k! f c~2k!&. ~4.8!

For our choice of correlation functions after the introducti
of simple sharp cutoffs, Eq.~4.8! yields the relation between
the unrenormalized values of the coupling constants and
energy and scalar injection rates in the form

«5
~d21!n0

3

2 E
kI,k,kd

ddk

~2p!d
~gv10k222d22e1gv20k2!,

x5n0
3 u0

3E
kI,k,kd8

ddk

~2p!d
~ gc10k

222d22ae1gc20k2 !,

~4.9!
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wherekI is the wave number corresponding to the integ
scale, andkd , kd8 are the characteristic wave numbers
viscous and molecular dissipation, respectively.

In the stationary state modeling developed isotropic t
bulence, the energy and mass injection are assumed to
place at large scales. Therefore, we put the parametersgv20
and gc20, which correspond to small-scale injection of e
ergy and scalar, equal to zero. It should be borne in mind
the corresponding running coupling constants are create
the course of renormalization regardless of the unrenorm
ized values of these parameters. The present perturbative
culation yields only the leading order in thee, d expansion
of the amplitude coefficients in the scaling form of the co
relation functions. Therefore, the coupling constants sho
be solved from Eq.~4.9! as functions of« andx also only at
leading order ofe, d expansion. Thus, we arrive at the rel
tions

«5
n0

3 gv10

16p
kd

422e,

x5
n0

3 u0
3 gc10

8p
kd8

422ae, ~4.10!

valid for large Reynolds and Peclet numbers, whenkd /kI

; Re3/4@1 andkd8/kI; Pe3/4@1.
We use the following definitions for thed-dimensional

and one-dimensional spectra of the energy and passive
lar,

Wii
vv~ t,x;t,x!52E

0

`

dk E~k!,

W11
vv~ t,x;t,x!5E

0

`

dk1 E1~k1!, ~4.11!

Wcc~ t,x;t,x!5E
0

`

dk Ec~k!5E
0

`

dk1 E1
c~k1!,

respectively. The spectral functionsE, E1 and Ec, E1
c are

connected as

E1~k1!5
2G~d/2!

ApG„~d11!/2…
E

k1

`S 12
k1

2

k2D ~d21!/2

E~k!
dk

k
,

E1
c~k1!5

2G~d/2!

ApG„~d21!/2…
E

k1

`S 12
k1

2

k2D ~d23!/2

Ec~k!
dk

k
.

~4.12!

From Eqs.~4.7!, ~4.10!, and ~4.11! we then obtain the fol-
lowing asymptotic expressions for the spectra:

E~k!5Ck «2/3k124e/3 kd
4~e22!/3 ,

E1~k1!5Ck1 «2/3k1
124e/3 kd

4~e22!/3,

Ec~k!5Coc x «21/3k122ae12e/3 kd
~422e!/3kd8

2ae24,
~4.13!
l
f

-
ke

at
in
l-
al-

-
ld

ca-

E1
c~k1!5Coc1 x «21/3k1

122ae12e/3 kd
~422e!/3kd8

2ae24.

Here, the Kolmogorov constant in thed-dimensional spec-
trum is

Ck5~2p!21/3
gv1* 1gv2*

~gv1* !2/3
5

23121/3e1/3~e1d!2/3

~2e13d!2/3
,

~4.14!

and coincides ford50 with the value obtained in@29#.
It is, however, different from the valueCk524/3(2
1d)1/3e1/3321/3 @21# obtained in the standarde expansion.

The Obukhov-Corrsin constant in Eq.~4.13! for the
d-dimensional spectrum is

Coc5~2p!21/3
2ae12d

2ae12d2g48*

~gv1* !1/3

u*

5
43121/3e1/3~2e13d!1/3~ae1d!

~A1721! ~e1d!1/3~3ae13d2e!
. ~4.15!

For one-dimensional spectrum the conversion factors are

Ck1

Ck
5

G~11d!G~2e/321/2!

ApG~11d12e/3!
,

Coc1

Coc
5

G~11d!G~ae2e/321/2!

ApG~d1ae2e/3!
.

Contrary to the standard RG approach@30,31#, the ratio
Ck /Coc here is not a function of the fixed-point value of th
inverse Prandtl number only, but depends on the fixed-p
values of other coupling constants as well. In this sense
ratio seems less universal than in the standard approach.
to the linear dependence of the scalar-scalar correlation fu
tion on the correlation function of the random scalar sour
however, the ratioCk /Coc is definitely independent of the
parameters of the scalar injection. It is a curious feature
the expressions~4.14! and ~4.15! that the ratioCk /Coc be-
comes independent of bothd and e for a51, which is the
physical value of this parameter.

In the inertial-convective range@32# the only relevant
physical parameters should be the energy and scalar injec
rates. To get rid of the dissipative wave numbers, we cho
e52 and a51 as the physical values of these paramet
corresponding to the inertial-convective range, in which
Prandtl numberu0

21 and, consequently, the ratiokd /kd8 are of
the order of unity. Analysis of the limiting casesu0@1
~inertial-conductive range! and u0!1 ~viscous-convective
range! in the present setup requires more detailed knowle
about the scaling functionRc and is beyond the scope of th
present treatment.

Thus, in the inertial-convective range, we arrive at t
values

Ck524/3
•31/3'3.634, Ck15

G~5/6!

ApG~7/3!
Ck'1.944,

d52,
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Ck54 ~75/121!1/3'3.411, Ck15
18

55
Ck'1.116, d53

~4.16!

for the Kolmogorov constant and

Coc5
2324/3

•31/3

A1721
'2.327,

Coc15
G~5/6!

ApG~4/3!

Coc'1.660, d52,

Coc5
8 ~75/121!1/3

A1721
'2.184,

Coc15
3

5
Coc'1.310, d53 ~4.17!

for the Obukhov-Corrsin constant. When comparing with
data from experiments and simulations, which yield the v
uesCk1'0.5 @33# and Coc1'0.4 @34# (d53), it should be
borne in mind that the values~4.16! and~4.17! correspond to
the leading terms of an asymptotic expansion with an exp
sion parameter, which is not small. The value of the ra
Coc1 /Ck1511/@3(A1721)#'1.174, however, is a bit close
to the experimental value 0.8@34# than the values of the
constants themselves.

The value of the Kolmogorov constantCk obtained here
for d53 is also different from that in the standarde expan-
sion, whereCk(d53)52(10/3)1/352.988 @21#. Of course,
the leading order terms of two different expansions of
Kolmogorov constant do not allow us to make definite co
clusions about the eventual value of this constant in th
expansions. On the other hand, the coefficients of the uni
sal powers in scaling regimes predicted by the RG are
universal in general, and this may well be the case her
well.

In the minimal subtraction scheme only the singular co
tributions of the graphs to the renormalization constants
retained. In general, the renormalization constants are d
mined up to a finite renormalization, which may be used
relate the parameters of the model to observables at s
reference scale. For the stochastic Navier-Stokes equa
for instance, a natural choice would be

1

2

]2

]k2
~Wvv8!21~v,k!uv5m2n

k5m
52n0 , ~4.18!

whereWvv8 is the renormalized response function of the v
locity field, andn0 is the viscosity at the reference wav
numberm. The normalization~4.18! implies that at wave
numbers of the order ofm the nonlinear terms are negligible
e
l-

n-
o

e
-
e
r-

ot
as

-
re
er-
o

e
n,

-

The choice of renormalization scheme does not affect
scaling exponents, but it may change the scaling functio
However, in thee expansion, any renormalization prescri
tion different from the minimal subtraction scheme chang
the coefficient and scaling functions by terms, which are
higher order than the leading order in thee expansion. In the
present paper the correlation functions and spectra are ca
lated at leading order in thee expansion, which is uniquely
given by the minimal subtraction procedure.

V. CONCLUSIONS

In the present paper we have investigated the mode
diffusion of passive admixture in a turbulent velocity fie
generated by the stochastic Navier-Stokes equation. F
long-range correlated random force in the Navier-Sto
equation and a long-range correlated random injection of
passive scalar in the advection-diffusion equation, we h
constructed the field-theoretic action corresponding to
stochastic problem.

In order to make the field-theoretic model multiplicative
renormalizable at two dimensions we have added short-ra
terms to the correlation functions of the random source fie
and renormalized the model at one-loop order.

The principal consequences of the multiplicative ren
malizability conditions are~i! a more complex form of the
action@25#, or equivalently~ii ! a more complex forcing cor-
relation function@27# including large and small scale term
~2.7!.

By use of the renormalization group, we have construc
an expansion of the model in two dimensionless paramet
the deviation of the space from two and the deviation of
exponent of the powerlike correlation functions of the ra
dom source fields from the logarithmic value.

We have found that the renormalization constants of
model are independent of the coupling constantsgc1 andgc2,
which measure the scalar injection rate, apart from the ren
malization constant of the scalar injection rate term with
cal correlations, which is shown to be a linear function
these coupling constants to all orders in the perturba
theory. As a consequence, the large-scale asymptotic be
ior of the model is determined by the fixed point of th
model without scalar injection.

We have calculated the energy and scalar injection spe
at the leading order of thee, d expansion and found them t
reproduce the Kolmogorov and Batchelor scaling behav
for the physically most acceptable values of the expans
parameters. The Kolmogorov and Obukhov-Corrsin~Batch-
elor! constants have also been calculated at the leading o
of the double expansion. The ratio of the Kolmogorov a
Obukhov-Corrsin constants depends not only on the fix
point value of the inverse Prandtl number, as in the stand
e expansion, but also on the fixed-point values of the r
parameters of the energy injection. It is, however, indep
dent of the parameters of the scalar injection.

The standarde expansion@11,12# and the present doubl
expansion are the only regular schemes to construct sca
functions~correlation functions, spectra etc.! describing the
self-similar behavior in stochastically forced hydrodynam
equations. There is recent evidence that the results of
standarde expansion are in agreement with nonperturbat
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results in the simple Kraichnan model for the advection
the passive scalar for finite values ofe @35#. This allows us to
hope that the results in thee expansion and the double ex
pansion will also be useful for more realistic velocity fiel
for those finite values of the expansion parameters that
respond to the Kolmogorov scaling.
,
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@8# K. Gawȩdzki and A. Kupiainen, Phys. Rev. Lett.75, 3834

~1995!.
@9# L. Ts. Adzhemyan, N. V. Antonov, and A. N. Vasil’ev, Phy

Rev. E58, 1823~1998!.
@10# H. W. Wyld, Ann. Phys.~N.Y.! 14, 143 ~1961!.
@11# C. De Dominicis and P. C. Martin, Phys. Rev. A19, 419

~1979!.
@12# L. Ts. Adzhemyan, A. N. Vasil’ev, and Yu. M. Pis’mak, Teo

Mat. Fiz. 57, 268 ~1983!. For a recent review, see L. Ts
Adzhemyan, N. V. Antonov, and A. N. Vasil’ev, Usp. Fiz
Nauk 166, 1257~1996! @Phys. Usp.39, 1193~1996!#.

@13# D. Forster, D. R. Nelson, and M. J. Stephen, Phys. Rev. A16,
732 ~1977!.

@14# L. Ts. Adzhemyan, A. N. Vasil’ev, and M. Hnatich, Teor. Ma
Fiz. 58, 72 ~1984!.

@15# S. Ma and G. F. Mazenko, Phys. Rev. Lett.33, 1383~1974!.
@16# R. Bausch, H. K. Janssen, and H. Wagner, Z. Phys. B24, 113

~1976!.
@17# V. Yakhot and S. A. Orszag, J. Sci. Comput.1, 3 ~1986!; W. P.
Dannevik, V. Yakhot, and S. A. Orszag, Phys. Fluids30, 2021
~1987!.

@18# L. M. Smith and W. C. Reynolds, Phys. Fluids A4, 364
~1992!.

@19# O. Reynolds, Philos. Trans. R. Soc. London174, 935 ~1883!.
@20# O. Reynolds, Philos. Trans. R. Soc. London, Ser. A186, 123

~1895!.
@21# L. Ts. Adzhemyan, N. V. Antonov, and A. N. Vasil’ev, Zh
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@31# N. V. Antonov, Zh. Éksp. Teor. Fiz.112, 1649~1997! @JETP

85, 898 ~1997!#.
@32# A. S. Monin and A. M. Yaglom,Statistical Fluid Mechanics:

Mechanics of Turbulence~MIT Press, Cambridge, 1975!,
Vol. 2.

@33# K. R. Sreenivasan, Phys. Fluids7, 2778~1995!.
@34# K. R. Sreenivasan, Phys. Fluids8, 189 ~1996!.
@35# O. Gat, V. S. L’vov, E. Podivilov, and I. Procaccia, Phys. Re

E 55, R3836 ~1997!; O. Gat, V. S. L’vov, and I. Procaccia
ibid. 56, 406 ~1997!; A. Pumir, ibid. 57, 2914~1998!.


